

UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS – CCNE DEPARTAMENTO DE BIOLOGIA DISCIPLINA DE GENÉTICA AGRONOMIA

Unidade 6 – Genética de Populações

1. Introdução

A Genética de Populações é um dos ramos matemáticos da Genética porque visa estabelecer relações dos alelos mendelianos dentro de populações de indivíduos.

Nascida da necessidade de explicações para a origem da variação explicada por Charles Darwin ao elaborar a Teoria da Evolução das Espécies, a Genética de Populações relaciona genes que determinam as características com suas frequências dentro de populações, explicando como ocorre variação nessas populações no tempo e no espaço.

A Genética de Populações estuda a origem da variação e como essa variação é transmitida dentro das populações. Além disso, é um mecanismo que auxilia os métodos de melhoramento de plantas.

A variação das populações é devido a vários fatores, dentre eles estão à mutação. A mutação, em linhas gerais, é a alteração do gene a nível molecular gerando um novo fenótipo. Entretanto a mutação pode ser benéfica para os indivíduos que a possuem e, portanto, pode se estabelecer e se fixar na população. Os demais fatores da variação são a seleção, a introdução de germoplasma, o desvio meiótico e a deriva genética que ocasionam alterações nas frequências alélica e genotípica de populações sujeitas a processos de melhoramento.

O conceito do que seja **população** leva a melhor compreensão do presente assunto. Segundo Ramalho et al. (2008) população é:

"Um conjunto de indivíduos da mesma espécie, que ocupa o mesmo local apresentando continuidade no tempo e cujos indivíduos possuem capacidade de se acasalarem ao acaso, portanto, de trocar alelos entre si."

Atualmente é possível se estudar processos de evolução de plantas sob o aspecto da Genética de Populações, haja vista que, não havendo impedimentos para cruzamentos entre as populações próximas, a troca de genes altera sua frequência até que o equilíbrio se estabeleça.

O equilíbrio das populações foi primeiramente estudado por Godfrey Harold Hardy, na Inglaterra e por Wihelm Weimberg, na Alemanha em 1908. Ambos os pesquisadores estabeleceram o Teorema de Hardy-Weimberg que descreve o equilíbrio genético. O Teorema de Hardy-Weimberg possui o seguinte enunciado:

"Numa população mendeliana as frequências alélicas e genotípicas permanecerão constante ao longo das gerações se fatores como mutação, seleção, migração, desvio meiótico e deriva genética não tiverem atuando sobre essa população."

2. Análise de frequências mendelianas. Teorema de Hardy-Weimberg.

A Evolução fundamentalmente é um processo que envolve mudanças genéticas na estrutura das populações. Para se poder compreendê-las é necessário, portanto, um estudo prévio da genética a nível populacional.

É perfeitamente possível predizer a frequência com que ocorrem os diversos genótipos na descendência de um dado cruzamento. Para se fazer uma previsão exata é preciso levar em conta uma série grande de fatores, tais como: os loci e os alelos envolvidos, os genótipos dos genitores, a viabilidade relativa dos gametas e a viabilidade relativa dos genótipos. As frequências fenotípicas podem ser iguais às genotípicas, mas podem também deferir bastante destas, como consequência de outros fatores como a dominância, a epistasia e a penetrância. A Genética de Populações vem a ser, basicamente, o estudo de tais fatores.

O Teorema de Hardy-Weimberg é a base inicial para o estudo mais aprofundado que se denomina Genética de Populações. Esse teorema prevê que a soma das frequências alélicas (p+q) seja igual a 1, isso se refere a que esses gametas sejam viáveis, podendo fecundar ou serem fecundados. Da mesma forma a soma das frequências genotípicas $(p^2 + 2pq + q^2)$ seja também 1 o que indica a viabilidade dos indivíduos que possuem os alelos em estudo.

Aqui, neste momento, se verá, em primeiro lugar, como se determinam as frequências alélicas e genotípicas e se a população inicial do estudo se encontra em equilíbrio ou não e, em segundo lugar, como esses valores são usados para seleção genotípica e para a introdução de germoplasma em populações que necessitam de variabilidade.

2.1. Determinação das frequências alélicas

2.1.1. Considerando apenas um locus

Os alelos de um gene serão aqui estudados como estimativas matemáticas, portanto se for considerado \underline{A} e \underline{a} como um gene que determina uma característica apenas, com dominância completa ou não, \underline{A} será denominado de \underline{p} e \underline{a} de \underline{q} , como prevê a Teoria de Hardy-Weimberg.

a. Quando ocorre dominância entre os alelos

Para se determinar as frequências alélicas numa população, para apenas um gene, com dois alelos, deve-se primeiro entender da interação que ocorre entre esses dois alelos.

Primeiro, se ocorrer dominância de um alelo sobre outro o cálculo deve iniciar pelo grupo de indivíduos que se conhece o genótipo pelo fenótipo.

Segundo, calcula-se à proporção que o indivíduo se encontra em toda a população. O valor obtido referese ao genótipo.

Terceiro, para se determinar a frequência alélica deve-se extrair a raiz quadrada do valor anteriormente obtido.

Quatro, para se determinar a frequência alélica do alelo homólogo usa-se a fórmula:

$$p + q = 1$$

Usando esses passos determinam-se, então, as frequências alélicas de cada alelo dentro da população, para um gene apenas, portanto, de caráter mendeliano.

b. Quando não houver dominância entre os alelos

Neste caso, quando não há dominância entre os dois alelos de um gene, é possível se reconhecer seus genótipos pelos fenótipos que apresentam. Quando isso acontece, como no caso da herança intermediária ou codominância, deve-se recorrer ao seguinte artifício de cálculo para se determinar as frequências alélicas:

Primeiro, calcula-se, na população, à proporção que cada genótipo se encontra.

Segundo, se considerar os alelos <u>Aa</u> de um gene, os indivíduos <u>AA</u> serão diferentes dos <u>Aa</u>, portanto a frequência do alelo <u>A</u> pode ser determinada somando-se o total da proporção de <u>AA</u> com a metade da proporção de <u>Aa</u>; o mesmo cálculo pode ser feito para a frequência do alelo <u>a</u>. Para melhor explicitar tal cálculo, demonstram-se as fórmulas seguintes:

$$p_A = P \text{ (total de homozigotos)} + Q \text{(total de heterozigotos)}/2$$

$$q_a = R (total \ de \ homozigotos) + Q(total \ de \ heterozigotos)/2$$

Terceiro, para o cálculo das frequências genotípicas e da nova população, em equilíbrio, se faz como no item 3 a seguir.

Deve-se entender que um processo não exclui o outro. É possível se determinar as frequências alélicas de população onde o gene não apresenta dominância usando o método da raiz quadrada.

3. Determinação das Frequências Genotípicas

O cálculo das frequências alélicas e genotípicas poderá ser realizado por duas metodologias. Uma delas utiliza as frequências genotípicas iniciais e a outra os dados absolutos.

3.1. Frequências genotípicas iniciais

a. Considerando apenas um locus

Como as estimativas matemáticas dos alelos mendelianos, agora chamados de p e q, sendo esses alelos combinados entre si, obtém-se então as estimativas matemáticas dos genótipos, como se segue:

	p	q
P	p²	pq
Q	pq	q²

Onde:

P² - refere-se ao genótipo homozigoto dominante;

pq - refere-se ao genótipo heterozigoto;

q² - refere-se ao genótipo homozigoto recessivo;

A Teoria de Hardy-Weimberg prevê que $\mathbf{p}^2 + \mathbf{2} \ \mathbf{pq} + \mathbf{q}^2$, que são as frequências genotípicas, resulte num valor igual a 1 ou 100%, pois todos os indivíduos estão representados se fatores alheios a população não agirem sobre eles.

Se forem multiplicados os valores obtidos com a fórmula anterior pela quantidade de indivíduos da população, obter-se-ão os valores absolutos que representam o total de genótipos. Baseado nisto, para se saber se a população está em equilíbrio ou não, basta aplicar o teste estatístico \aleph^2 , onde a F_0 será a população inicial e F_E será a população calculada. Examinando após a tabela referente ao teste de significância, se poderá dizer sobre o equilíbrio da população.

No momento que se obtém os valores absolutos, baseado nas frequências genotípicas, já se estabelece igualmente a nova população (teórica) que está em equilíbrio de Hardy-Weimberg. O equilíbrio, de forma empírica, também pode ser estabelecido pela seguinte fórmula:

$$2 \text{ pq} \cong 2\sqrt{p^2 \cdot q^2}$$

Utilizando o exemplo abaixo descrito:

Fenótipos	Quantidade	Freq. genotípica	Símbolos	Genótipos
Branca	300	0,3	P	AA
Roxa menos intensa	500	0,5	Q*	Aa
Roxa mais intensa	200	0,2	R	aa
TOTAL	1000	1		

^{*} O símbolo "Q" sempre deverá ser o heterozigoto.

A frequência de A será:
$$p_A = P + \frac{Q}{2} = 0.3 + \frac{0.5}{2} = 0.55$$

A frequência de a será:
$$q_a = R + \frac{Q}{2} = 0.2 + \frac{0.5}{2} = 0.45$$

As frequências genotípicas calculadas após as frequências alélicas ficam assim constituídas:

$$p^{2}_{AA} = 0.55^{2} = 0.3025$$

 $2 pq_{Aa} = 2 \times 0.55 \times 0.45 = 0.495$
 $q^{2}_{aa} = 0.45^{2} = 0.2025$

Para verificar-se o equilíbrio da população pode-se utilizar a fórmula empírica de Fisher, conforme cálculo abaixo:

$$2 \times 0.495 \cong 2 \times \sqrt{0.3025 \times 0.2025}$$

 $0.495 \cong 0.495$

Os valores foram iguais, portanto as frequências calculadas segundo o Teorema de HW levou a população ao equilíbrio. Dessa forma a população em dados absolutos fica assim constituída:

Fenótipos	Quantidade	Freq. genotípica	Símbolos	Genótipos
Branca	302	0,3025	P	AA
Roxa menos intensa	495	0,495	Q*	Aa
Roxa mais intensa	203	0,2025	R	aa
TOTAL	1000	1		

Agora utilizar-se-á os valores absolutos para o cálculo das frequências alélicas e genotípicas populacionais. Considerando uma população aleatoriamente:

$$30 A_1A_1 + 40 A_1A_2 + 30 A_2A_2$$

Quais são as frequências de ambos os alelos A_1 e A_2 ?

Para o alelo
$$A_1$$
 30 indivíduos com 2 A_1 = 60 alelos A_1 40 indivíduos com 1 A_1 = 40 alelos A_1 Total de alelos A_1 = 100

Para o alelo
$$A_2$$
 30 indivíduos com 2 A_2 = 60 alelos A_2 40 indivíduos com 1 A_2 = 40 alelos A_2 Total de alelos A_2 = 100

$$A_1 + A_2 = 200 \text{ alelos}$$
 Freq $A_1 = \frac{100}{200} = 0.5$ Freq $A_2 = \frac{100}{200} = 0.5$

Se essas frequências alélicas forem aplicadas na fórmula das frequências genotípicas obter-se-á:

$$p^{2}_{A1A1} = 0.5^{2} = 0.25$$

$$2 pq_{A1A2} = 2 \times 0.5 \times 0.5 = 0.50$$

$$q^{2}_{A2A2} = 0.5^{2} = 0.25$$

Portanto a população ficará assim constituída:

$$0,25 A_1A_1 + 0,50 A_1A_2 + 0,25 A_2A_2$$

Utilizando-se o método mendeliano para se verificar o equilíbrio da primeira população, usa-se as frequências alélicas obtidas, resultando em:

$$\begin{array}{c|cccc} & 0.5 \ A_1 & 0.5 \ A_2 \\ \hline 0.5 \ A_1 & 0.25 \ A_1 A_1 & 0.25 \ A_1 A_2 \\ \hline 0.5 \ A_2 & 0.25 \ A_1 A_2 & 0.25 \ A_1 A_2 \\ \end{array}$$

Numericamente:

$$25 A_1A_1 + 50 A_1A_2 + 25 A_2A_2$$

Agora, para verificar-se o equilíbrio faz-se da mesma forma:

Para o alelo A₁

25 indivíduos com 2 $A_1 = 50$ alelos A_1 50 indivíduos com 1 $A_1 = 50$ alelos A_1

Total de alelos $A_1 = 100$

Para o alelo A2

25 indivíduos com 2 $A_2 = 50$ alelos A_2 50 indivíduos com 1 $A_2 = 50$ alelos A_2 Total de alelos $A_2 = 100$

 $A_1 + A_2 = 200$ alelos

Freq
$$A_1 = \frac{100}{200} = 0.5$$
 Freq $A_2 = \frac{100}{200} = 0.5$

Como as mesmas frequências iniciais foram obtidas, significa que a população inicial estava em equilíbrio de Hardy-Weimberg.

b. Considerando dois loci

Assim como se realizou, no item anterior, os cálculos das frequências alélicas e genotípicas para um locus, será demonstrado agora o cálculo das mesmas frequências quando dois genes independentes estiverem sendo estudados na mesma população, ao mesmo tempo.

Se considerar os genes \underline{A} com seu alelo \underline{a} e \underline{B} com seu alelo \underline{b} , sendo que A > a e B > b, num indivíduo diploide, então pode-se, matematicamente, dizer que o alelo \underline{A} será chamado de \underline{p} ; que \underline{a} será \underline{q} ; que \underline{B} será \underline{r} e que \underline{b} será \underline{s} .

Sendo o genótipo dos indivíduos heterozigotos da geração F_1 AaBb ele irá produzir os seguintes gametas: AB; Ab; aB; ab, que poderão ser chamados de pr; ps; qr e qs, respectivamente.

Sabendo que os gametas da F_1 combinando-se, entre si, por fecundação, para originarem a geração F_2 pode-se estabelecer as frequências genotípicas, como se segue: AABB (p^2 r^2); AABb (p^2 p^2

Sendo esses genes independentes pode-se escrever que: $(p^2 + 2pq + q^2) \times (r^2 + 2rs + 2^2)$ resultará na expressão genotípica/matemática acima escrita.

Equilíbrio de HW para dois loci

Sendo os gametas produzidos pela F₁:

Então o equilíbrio de HW será alcançado quando **hk** = **ij** ou **AB.ab** = **Ab.aB**. Quando **hk** for diferente de **ij** a população não está em equilíbrio, aparecendo uma diferença d, como se segue:

$$\mathbf{Ij} - \mathbf{hk} = \mathbf{d}$$
 ou $(\mathbf{Ab.aB}) - (\mathbf{AB.ab}) = \mathbf{d}$

Para que o equilíbrio na população se estabeleça o diferencial (d), se positivo, deve ser somado à frequência dos gametas em associação (AB e ab) e diminuído dos em repulsão (aB e Ab). Caso o diferencial calculado for **negativo**, procede-se o cálculo de inversa.

Um exemplo numérico para dois loci

Considerando as seguintes frequências gaméticas numa população:

AB	Ab	aB	ab
0,40	0,30	0,20	0,10
pr	ps	qr	qs
h	i	j	k

A população está em equilíbrio de Hardy-Weimberg? Se não quais os valores das frequências gaméticas que estarão em equilíbrio? A primeira pergunta será respondida pelo seguinte cálculo:

- Se (Ab).(aB) = (AB).(ab) então a população está em equilíbrio;
- Se (Ab).(aB) ≠ (AB).(ab) então a população não está em equilíbrio, neste caso deve-se calcular o diferencial (d), como se segue:

(Ab).(aB) - (AB).(ab) = d

$$(0,3).(0,2)$$
 - $(0,4).(0,1)$ = d
 $0,06$ - $0,04$ = d
 $0,02$ = d

Neste caso \underline{d} é positivo. Portanto, para se saber quais serão as frequências de equilíbrio, deve-se somar \underline{d} as frequências gaméticas em associação e diminuir das em repulsão, como a seguir:

$$f (AB) = 0.40 + 0.02 = 0.42$$

$$f (Ab) = 0.30 - 0.02 = 0.28$$

$$f (aB) = 0.20 - 0.02 = 0.18$$

$$f (ab) = 0.10 + 0.02 = 0.12$$

Para comprovar o equilíbrio de HW: (Ab).(aB) = (AB).(ab); $0.28 \cdot 0.18 = 0.42 \cdot 0.12$; = **0.0504**.

4. Fatores que afetam as frequências alélicas e genotípicas

4.1. Seleção Genotípica

a. Seleção total (S = 1)

Neste caso a seleção será contra alelos recessivos de uma população. Os genótipos recessivos são reconhecidos fenotipicamente, portanto é fácil retirá-los da população. Quando são eliminados genótipos recessivos novas frequências serão estabelecidas conforme tabela abaixo.

Tabela 6.1 – Efeito da seleção genotípica contra alelos recessivos.

Alelos	Antes da Seleção	Freq. Populacional	População (x 10.000)
br_2	0,4	$p_0^2 = 0.6^2 = 0.36$	$3.600 \operatorname{Br}_2 \operatorname{Br}_2$
Br_2	0,6	$2pq = 2 \cdot 0.6 \cdot 0.4 = 0.48$	$4.800 \ \mathrm{Br}_2 \ \mathrm{br}_2$
		$q_0^2 = 0.4^2 = 0.16$	$1.600 \text{ br}_2 \text{ br}_2$
	D	epois da seleção	
$q_1 = \frac{q_0}{1+}$	$\frac{0}{q_0} = \frac{0.4}{1 + 0.4} = 0.2857$	$p_1 = \frac{1}{1+q_0} = \frac{1}{1+0.4}$	= 0,7143

Alelos	Genótipos	Freq. Populacional	População
br_2	$\mathrm{Br}_2\mathrm{Br}_2$	$p_1^2 = 0,7143^2 = 0,509$	$5.090 \operatorname{Br}_2 \operatorname{Br}_2$
Br_2	$Br_2 br_2$	$2p_1q_1 = 2. \ 0.7143 \ . \ 0.2857 = 0.4081$	$4.081 \text{ Br}_2 \text{ br}_2$
	$br_2 br_2$	$q_1^2 = 0.2857^2 = 0.0816$	$816 \mathrm{br}_2 \mathrm{br}_2$

Seleção parcial (quando S assume valores entre 0 e 1)

A seleção parcial está relacionada com o valor adaptativo (W) da característica. O valor adaptativo da característica pode ser definido como a progênie gerada que sobrevive após seleção e se reproduz para formar a próxima geração.

Tanto em plantas como em animais a taxa reprodutiva é de grande importância, por isso em populações naturais valor adaptativo para os genes que envolvem reprodução é alto. Todavia, é possível que combinações alélicas recessivas, chamadas de letais apareçam na população reduzindo a capacidade reprodutiva dos indivíduos. Por isso, se tivermos as seguintes frequências genotípicas, antes e após a seleção:

		Genótipos	
Frequências	A_1A_1	A_1A_2	A_2A_2
Freq. antes da seleção	p²	2pq	q²
Valor adaptativo	W	$w(1-s_1)$	$w(1-s_2)$
Freq. após seleção	p²	$2pq (1 - s_1)$	$q^2 (1 - s_2)$

Nesse caso a seleção está ocorrendo contra os alelos recessivos, de forma que os indivíduos dominantes e os heterozigotos são iguais. Entretanto, a capacidade reprodutiva ao longo das gerações vai se reduzindo (ver item 4.1 a).

O índice de seleção "s" pode assumir valores variáveis entre 0 e 1. Quando for zero não haverá seleção e quando for 1 a seleção será total (ver item 4.1 a).

Supondo que o índice de seleção "s" assuma o valor 0,6 numa população cujas frequências alélicas são q = 0.01 e p = 0.99, então as frequências ficam assim estipuladas:

Freq A =
$$\frac{p^2 + pq}{1 - sq^2} = \frac{p}{1 - sq^2}$$
 e a Freq A = 1 - freq A

A variação devido à seleção será:

$$\Delta p = \frac{p}{1 - sq^2} - p = \frac{spq^2}{1 - sq^2}$$

Numericamente fica assim determinado:

$$\Delta p = \frac{0.6 \times 0.99 \times (0.1)^2}{1 - [0.6 (0.1^2)]} = \frac{0.6 \times 0.99 \times 0.0001}{1 - 0.00006} = 0.0000594$$

Se a frequência inicial do alelo \underline{A} é p = 0,99, após a seleção será: $p_1 = 0,99 - 0,0000594 = 0,9899$; a frequência do alelo <u>a</u> será: $q_1 = 1 - 0.9899 = 0.01$.

Se o mesmo coeficiente de seleção for aplicado numa população cujas frequências alélicas são p = q = 0.5. Então a variação será:

$$\Delta p = \frac{0.6 \times 0.5 \times 0.25}{1 - (0.6 \times 0.25)} = \frac{0.075}{1 - 0.15} = 0.088$$

Dessa forma as novas frequências alélicas serão: $p_1 = 0.5 - 0.088 = 0.41$ e $q_1 = 1 - 0.41 = 0.59$.

Esses dois exemplos numéricos demonstram que a mudança de frequência de um determinado gene depende de sua frequência inicial e do índice de seleção que for aplicado à população (GIANNONI e GIANNONI, 1983).

4.1.1. Ganho de Seleção

Os valores do ganho de seleção aqui usados foram obtidos na tabela 6.1.

 $\Delta q = q_1 - q_0$ Esta variação diz quanto variou a frequência do alelo na população. Se este valor for dividido pela frequência inicial se obterá a porcentagem de redução do alelo na população.

Sendo $q_1 = 0.2857$ e $q_0 = 0.4$ então:

$$\Delta q = 0.2857 - 0.4 = -0.114$$

$$\frac{\Delta q}{q_0} \times 100 = \frac{-0.114}{0.4} \times 100 = 28.5\%$$

4.1.2. Ciclos de seleção

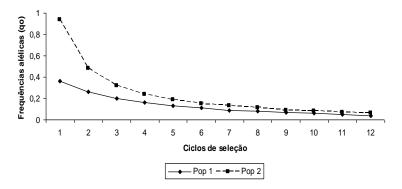
O ciclo de seleção pode ser dado pela seguinte fórmula:

$$\mathbf{q}_t = \frac{\mathbf{q}_0}{1+\mathbf{q}_0}$$
 Onde \mathbf{q}_t é a frequência do alelo, objeto de seleção, na geração "t".

Este índice pode também ser obtido pela seguinte fórmula (derivada da anterior):

$$t = \frac{1}{q_t} - \frac{1}{q_0}$$

Como exemplo: se for necessário cinco ciclos de seleção, qual será a frequência do alelo "q" após estes ciclos?


$$5 = \frac{1}{q_t} - \frac{1}{0.4} = 0.133$$
 A frequência do alelo "br₂" após os cinco ciclos de seleção é agora "0,113". Para se obter a frequência do alelo "Br₂" basta que se faça a diferença: $p_5 + q_5 = 1$; $p_5 = 1 - q_5 = 1 - 0.113 = 0.866$

A população ficará assim constituída:

Tabela 6.2 – Constituição da população de milho após 5 ciclos de seleção contra o alelo "braquítico".

Frequência genotípica	(x 10.000)	Genótipos
$p^2 = 0,866^2 = 0,7511$	7.511	$Br_2 Br_2$
$2pq = 2 \cdot 0,866 \cdot 0,133 = 0,2304$	2.304	$\mathrm{Br}_2\mathrm{br}_2$
$q^2 = 0.113^2 = 0.0177$	177	$br_2 br_2$

Os ciclos de seleção provocam redução do genótipo indesejado da população. Essa redução será mais

rápida ou mais lenta de acordo com a frequência inicial do genótipo objeto de seleção. A figura 6.1 demonstra a evolução das frequências do genótipo recessivo (q) em processo de seleção genotípica.

Figura 6.1 – Evolução das frequências dos genótipos recessivos sob seleção em duas populações com frequências iniciais diferentes.

Observa-se nessa figura que a população 2 possui frequência do alelo recessivo mais alta e, portanto leva mais tempo para alcançar frequências mais baixas.

A figura 6.2 demonstra a evolução das frequências de \underline{p} e de \underline{q} ao longo do processo de seleção contra o genótipo recessivo (q). Nessa figura observa-se a tendência a homozigose dos genótipos principalmente após a nona geração de seleção. Partindo das frequências $q_0 = 0.94$ e $p_0 = 0.06$ onde a população tende a homozigoze recessiva, o segundo ciclo de seleção praticamente reduz a população a heterozigose para, a partir desse ponto,

tender novamente a homozigose, agora dominante.

Figura 6.2 – Evolução das frequências <u>p</u> e <u>q</u>, a partir da população com frequência recessiva alta (q = 0,94).

As tabelas abaixo demonstram a redução das frequências genotípicas nas populações 1 e 2, a partir da frequência q = 0,36 população 1 e q = 0,94 população 2.

Tabela 6.3 – Redução da frequência de q e o ganho de seleção (Δq) em duas populações hipotéticas.

Geração	Popul	ação 1	Popula	ação 2
	q	Δq	q	Δq
1	0,36		0,94	
2	0,26	0,10	0,48	0,46
3	0,20	0,06	0,32	0,16
4	0,16	0,04	0,24	0,08
5	0,13	0,03	0,19	0,05
6	0,11	0,02	0,15	0,04
7	0,09	0,02	0,13	0,02
8	0,08	0,01	0,11	0,02
9	0,07	0,01	0,09	0,02
10	0,06	0,01	0,08	0,01
11	0,05	0,01	0,07	0,01
12	0,04	0,01	0,06	0,01

4.2. Introdução de germoplasma

Migração é a incorporação de genes de uma população para outra, cuja finalidade é aumentar a base genética para posterior seleção de genótipos superiores. A fórmula para se estimar a frequência alélica a partir da introdução de germoplasma novo na população nativa é a seguinte:

$$q_1 = q_0(1 - M) + QM$$

Onde

q₁ – nova frequência alélica

q₀ – frequência anterior a migração

M – proporção de indivíduos migrantes em relação à população nativa

Q – frequência do alelo considerado na população de indivíduos migrantes

É possível se determinar a mudança na frequência dos alelos através da seguinte fórmula:

$$\Delta q = q_1 - q_0 \qquad \qquad \text{Ou} \qquad \qquad \Delta q = \ q_0 \ (1-M) + QM - \ q_0 \label{eq:deltaq}$$

Exemplo da aplicação da fórmula acima citada (valores iniciais estão na tabela da população inicial, item Seleção):

Sendo $Br_2 = 0.6$ e $br_2 = 0.4$ como frequências iniciais e sendo a introdução de 1.000 sementes novas numa população nativa de 4.000 sementes, quais serão as novas frequências genotípicas e a nova população a partir da migração?

$$M = \frac{1000}{1000 + 4000} = 0.2$$
 $q_1 = 0.4 (1 + 0.2) + 0.2 = 0.52$

A nova população ficará assim constituída:

População após migração	(x 5.000)	Genótipos
$p^2 = 0.48^2 = 0.2304$	1.152	$\operatorname{Br}_2\operatorname{Br}_2$
$2pq = 2 \cdot 0,48 \cdot 0,52 = 0,4992$	2.496	$Br_2 br_2$
$q^2 = 0,52^2 = 0,2704$	1.352	$br_2 br_2$

Fazendo-se uma pequena análise no quadro acima percebe-se o aumento da frequência de todos os alelos com adição de germoplasma. Esta população está em equilíbrio, portanto após realizar os tratamentos devidos, concernentes ao objetivo a ser trabalhado, é possível fazer-se novamente seleção dentro dessa população, pois todos os alelos estarão devidamente representados.

4.3. Mutação

Como foi visto a mutação pode ser também um mecanismo de alterações nas frequências gênicas e genotípicas em populações, embora de menor expressão que as anteriormente citadas.

O gene mutado necessita de capacidade de adaptação para se manter na população e essa capacidade está na possibilidade de produzir fenótipos que participem das modificações ambientais de pressão de seleção as quais as populações estão sujeitas.

Normalmente a frequência de mutações naturais é baixa e está na ordem de 10⁻⁵ a 10⁻⁶, portanto o pesquisador deve estar atento para perceber o fenótipo mutado entre 100.000 a um milhão de plantas, porém se for considerado que cada alelo tem uma taxa de mutação (u) e de mutação reversa (v), pode-se dizer que: se a frequência inicial de um gene A' seja p_0 e que de A' seja q_0 a taxa de mutação de A' para A'' será u e a taxa de mutação reversa, para esses mesmos alelos, será v. Então a alteração na frequência do alelo A'' (\Delta q) sob pressão de mutação será:

$$\Delta q = u p_0 - v q_0$$
 O desequilíbrio inicial nas frequências gênicas diminui progressivamente em gerações posteriores até que o equilíbrio (Δq) seja igual a zero e $u_p = v_q = 0$. Para se estabelecer as frequências alélicas mutacionais usa-se as seguintes fórmulas:

$$q = \frac{u}{u+v} \qquad \qquad e \qquad \qquad p = \frac{v}{u+v}$$

Como foi comentado no inicio deste, as fórmulas e as metodologias de cálculo são notas prévias sobre Genética e Populações, além de fornecer passos iniciais para se estudar seleção e/ou introdução de novos genótipos nas populações de plantas a serem melhoradas. A bibliografia sobre este assunto é vasta, pois é encontrada em capítulos de livros de Genética Básica como em livros que especificamente descrevem a Genética de Populações.

5. Referências Bibliográficas

MATHER, W.B. **Princípios de genética quantitativa**. Ribeirão Preto: Sociedade Brasileira de Genética. 1994. p.152.

RAMALHO, M.A.P.; SANTOS J.B.; PINTO, C.A.B.P. **Genética na agropecuária**. Lavras: Ed. UFLA. 2008. p.464.

GIONNINI, M.A.; GIANNONI, M.L. **Genética e melhoramento de rebanhos nos trópicos**. São Paulo: Nobel. 1983. p.463.

Exercícios

- 1. A frequência mendeliana numa população de sementes foi de 5.474 sementes lisas e 2.850 rugosas, sendo lisas (R) dominante sobre rugosa (r).
 - a. Calcule a frequência que cada alelo se encontra na população; R: r = 0,5851, R = 0,4149.
 - b. Verifique se a população está em equilíbrio de Hardy-Weimberg; R: Sim.
- 2. O albinismo em plantas é determinado por um par de alelos <u>aa</u> e a pigmentação normal por um alelo <u>A</u>.
 - a. Qual é o genótipo dos indivíduos albinos? R: aa.
 - b. Qual o fenótipo de um indivíduo heterozigoto? R: Normal.
 - c. Quais os genótipos dos indivíduos de pigmentação normal? R: AA e Aa.
 - d. Calcule as frequências alélicas e genotípicas, sendo que o número de plantas albinas, numa população de 15.000, é de 83. R: a = 0,074, A = 0,926. AA = 0,8574, Aa = 0,1370, aa = 0,00547.

3. Em 6.000 plantas de uma espécie foram identificadas as seguintes quantidades, segundo a cor das flores:

Brancas	Vermelho – branco	Vermelhas
100	2.830	3.070

- a. Verifique se a população está em equilíbrio de Hardy-Weimber. R: A população está fora do EHW.
- b. Determine as frequências alélicas e genotípicas na população em EHW. R: Frequência alélicas 0,7476 e 0,2524, frequências genotípicas 0,5589, 0,3773 e 0,0637.
- c. Se a contagem fenotípica tivesse fornecido os seguintes dados, mesmo nas 6.000 plantas:

Brancas	Vermelho – branco	Vermelhas
520	2.630	2.850

- d. A população atual está em equilíbrio de Hardy-Weimberg? R: Sim.
- e. Caso esteja fora de equilíbrio, quais serão as novas frequências, alélicas e genotípicas, da população em equilíbrio?
- 4. Na planta conhecida como maravilha, a cor da flor pode ser vermelha V1V1, rosa V1V2 ou branca V2V2. Em uma população panmítica composta por 5.000 plantas foram encontradas 225 com flores brancas.
 - a. Quais as frequências dos alelos V1 e V2 nessa população?
 - b. Entre os 5.000 indivíduos, quais os números esperados de plantas com flores vermelhas e rosas?
 - c. Se o jardineiro coletar sementes apenas das plantas de flores rosa para formar novo jardim, quais serão as frequências fenotípicas esperadas, para os fenótipos acima?
- 5. A população a seguir demonstra um estudo sobre o gene <u>h</u> que determina pecíolo alongado em tomates. O alelo <u>H</u> determina pecíolo curto, enquanto que o alelo <u>h</u> condiciona pecíolo intermediário. A contagem de frutos de tomates resultou em 250 hh, 670 Hh e 1.247 HH. Verifique se essa população está em equilíbrio de Hardy-Weimberg. Caso não esteja, qual a quantidade de plantas que determinam o equilíbrio?
- 6. Na população anterior equilibrada foi necessário aplicar ciclos de seleção de forma que o alelo h alcançasse uma frequência de 0,04. Calcule a quantidade de gerações para que essa frequência seja alcançada.

- 7. Após anos de pesquisa na população das questões anteriores for necessário incluir-se alelos <u>hh</u> para aumentar a quantidade de heterozigotos. Foi solicitado ao C.O. 420 sementes do mesmo genótipo.
 - a. Houve aumento dos heterozigotos com a introdução desse germoplasma?
- 8. Se uma população forem encontrados 345 rabanetes vermelhos (RR), 297 rabanetes brancos (R'R') e 136 rabanetes de cor púrpura (RR'). Responda:
 - a. Esta população está em equilíbrio de Hardy-Weimberg?
 - b. Quais serão as frequências dos genótipos acima expostos?
 - c. Se não estiverem em equilíbrio, qual será a nova população que estará em equilíbrio.
- 9. Uma população está constituída pelos seguintes fenótipos e suas quantidades: 996 folhas estreitas, 965 folhas largas e 224 folhas intermediárias.
 - a. Verifique se essa população está em equilíbrio de Hardy-Weimberg.
 - b. Determine as frequências alélicas e genotípicas, caso não esteja em equilíbrio.
 - c. A nova população após cultivo ficou constituída por 552 folhas estreitas, 520 folhas largas e 1.045 folhas intermediárias. Verifique se essa última população pode ser a mesma da prevista pelos cálculos matemáticos. (Utilize um teste de frequência).
 - d. A segunda população sofreu processos de seleção cujo ganho de seleção alcançou o valor de -0,1447, quando foram retiradas as plantas com folhas estreitas. Após esse processo qual a quantidade de cada um dos fenótipos na população selecionada.
- 10. Duas variedades homozigotas de *Nicotiana longiflora* apresentam o comprimento médio da corola de 40,5 mm e 93 mm. A média dos híbridos da F₁ destas duas variedades foi de comprimento intermediário. Entre 444 plantas da F₂, 25 apresentavam plantas tão pequenas ou tão grandes como as variedades paternais.
 - a. Qual o número de alelos que segregam na população.
 - b. Qual a contribuição de cada um?
- 11. Se três genes que segregam independentemente, com dois alelos cada um, por exemplo, Aa, Bb e Cc e determine a altura de uma população de plantas, de modo que a presença do alelo representado pela letra maiúscula condiciona aumento de 2 centímetros numa altura básica de 2 centímetros.
 - a. De a altura que se esperaria na F₁ de um cruzamento de populações homozigóticas AABBCC (14 cm) x aabbcc (2 cm).
 - b. Que proporção da F_2 teria a mesma altura de ambos os pais e da F_1 ?
 - c. Se os alelos tivessem efeito dominante apenas. Por exemplo, A- B- C- = 8 cm. Quais seriam as respostas aos itens (a) e (b)?
- 12. Nas galinhas da raça *Bantan* cujo genótipo é <u>aabbccDD</u> pesam aproximadamente 800 gramas. As da raça *Hamburguesa*, <u>AABBCCdd</u> pesam 1.350 gramas. Os genes que determinam o peso são polímeros, tanto A como B determinam um aumento de 60% sobre o peso mínimo de 615 gramas, quando em homozigose e 38% quando em heterozigose: os genes C e D produzem um aumento de 50% quando em homozigose e 25% em heterozigose. Em resumo tem-se:

Homozigotos		Heterozigotos		
AA	60%	Aa	38%	
BB	60%	Bb	38%	
CC	50%	Cc	25%	
DD	50%	Dd	25%	

- a. Qual o provável peso dos descendentes do cruzamento entre Bantan e Hambuerguesa?
- b. Determine os pesos das aves que se pode obter dos descendentes do cruzamento entre os genótipos: AaBbCCdd x aabbCCdd
- 13. Suponha que dois pares de genes com dois alelos cada um, Aa e Bb, determinam numa população a altura das plantas de forma aditiva. O homozigoto AABB tem uma altura de 50 centímetros e o homozigoto aabb mede 30 centímetros.

- a. Qual é a altura da F₁ do cruzamento dessa população homozigóticas?
- b. Que fenótipos se esperam obter em F_2 ?
- c. Qual será a frequência de plantas com 40 centímetros de altura?
- 14. Num cruzamento de variedades de trigo com grãos vermelhos e brancos 1/64 das plantas da F₂ possuíam grãos tão intensamente coloridos quanto aos do tipo paternal vermelho e 1/64 tinham grãos brancos. Cerca de 62/64 estavam entre os extremos paternais. Como pode ser explicada a diferença nos resultados desta F₂?
- 15. Por que se calcula a frequência alélica pelo método da raiz quadrada quando há dominância entre os alelos?
- 16. Numa população de papoulas foram encontradas as seguintes frequências para cor do caule: 0,281 marrom escuro; 0,163 marrom claro e 0,53 marrom médio. Verifique se essa população está em equilíbrio de HW. Caso não esteja em equilíbrio, quais são as quantidades de plantas que poderão equilibrar a população?
 - a. Da população calculada, para a próxima geração, foram retiradas todas as papoulas de caule marrom claro durante 12 gerações. Qual o ganho de seleção e obtido?
- 17. A coloração do grão de milho pode seguir uma herança do tipo intermediária. Pode-se, numa população, verificar que existem grãos coloridos, brancos e pigmentados. Foi encontrada numa população 389 grãos brancos, 2.159 grãos coloridos e 14 grãos vermelhos. Baseado nesses dados a população ____ as frequências alélicas são ____ e as frequências genotípicas em equilíbrio são ____.
 - a) Está em equilíbrio. 0,57 e 0,43. 0,49; 0,18; 0,32, respectivamente;
 - b) Não está em equilíbrio. 0,57 e 0,43. 0,32; 0,49; 0,18, respectivamente;
 - c) Não está em equilíbrio. 0,32; 0,49; 0,18. 0,57 e 0,43;
- 18. Numa população de grãos lisos e enrugados em milho foram encontradas as seguintes quantidades: 3.671 grãos lisos e 1.456 grãos enrugados. Para alcançar a frequência de 0,13 são necessários ____ de seleção e ainda aparecerão cerca de ____ enrugados na população.
 - a) 8 ciclos e cerca de 87 grãos.
 - b) 87 ciclos e cerca de 8 grãos
 - c) Menos de 8 ciclos e cerca de 87 grãos.

Fatores que afetam as frequências alélicas

- 19. Em soja foram selecionadas 654 plantas resistentes e 220 suscetíveis a *Cercosporasojina*. Verifique se essa população está em equilíbrio de Hardy-Weimberg. Caso esteja, realize 7 ciclos de seleção e verifique a quantidade de plantas ainda suscetíveis que se encontrarão na população.
- 20. A frequência do alelo recessivo w₁ numa população de aveia é de 0,45, resultante de uma seleção genotípica realizada em F₂ contra esse alelo. O pesquisador necessita induzir 460 sementes em uma população de 4.570 sementes melhoradas. Calcule a nova frequência desse alelo e quantas sementes com o fenótipo w₁w₁ estarão presentes na nova população?
- 21. Em milhos a textura do grão pode ser lisa (Su-) ou enrugada (susu). A cor amarela do grão é devido ao alelo Y e a branca ao alelo y. Em uma população em equilíbrio foi tomada uma amostra de 2.400 grãos, sendo 816 lisos e amarelos, 776 lisos e brancos, 408 enrugados e amarelos e 400 enrugados e brancos.
 - a. Quais são as frequências dos alelos Su e Y nessa população?
 - b. Qual a frequência esperada de indivíduos homozigóticos lisos e amarelos?
 - c. Quais serão as novas frequências alélicas para os dois caracteres se forem eliminadas todas as sementes enrugadas ou brancas?
 - d. Qual será a frequência de sementes lisas e amarelas após a população atingir novamente o equilíbrio?

- 22. Numa população melhorada de soja em que as cores das sementes são creme e amarela clara, o pesquisador introduziu 1.500 sementes de cor amarela clara, que é o genótipo recessivo. A frequência do alelo amarelo claro na instituição doadora é de 0,48. Dados: População inicial 2.552 sementes de cor creme e 2.448 sementes de cor amarela, 5.000 plantas no total.
 - a. Qual será a nova frequência alélica para essa cor na população após introdução.
 - b. Qual a quantidade de plantas com esse fenótipo que aparecerá na população total.

Estudo dirigido

- 23. Defina:
 - a. Frequência alélica.
 - b. Frequência genotípica.
- 24. A cor do bulbo em cebola pode ser branca, amarela ou creme. Essa herança monogênica controla por um par de alelos (gene) apresentando dominância incompleta.

Genótipo	Fenótipo
II	Bulbo branco
Ii	Bulbo creme
Ii	Bulbo amarelo

Se em um campo existirem distribuídas ao acaso 2.000 plantas, sendo 100 bulbos brancos, 1.000 bulbos creme e 900 bulbos amarelos, como serão as distribuições genotípicas dos fenótipos?

Fenótipos	Quantidade	Genótipos
Brancos	n1 = 100	
Cremes	n2 = 1.000	
Amarelos	n3 = 900	
TOTAL	N =	

A frequência genotípica é então obtida da seguinte forma.

a. Frequências dos alelos II = n1/N ou número de genótipos II/ número de indivíduos.

Fenótipos	Genótipos/ Símbolo	Valores	Freq. Genotípicas
Brancos	P		
Cremes	Q		
Amarelos	R		
TOTAL			

- 25. A partir desses dados pode-se determinar a frequência do alelo I será representada, a partir de agora, por p e a frequência do alelo i será representada por q, sendo que a frequência alélica dos fenótipos estudados é p + q = 1,0. Pelo que foi apresentado pode-se escrever que:
 - a. Nos indivíduos II, homozigotos dominantes existem ____ alelos I, por isso o número de indivíduos com este genótipo deve ser multiplicado por ____.
 - b. Nos indivíduos heterozigotos Ii, metade do genótipo é _____, portanto o número deve ser multiplicado por .
 - c. A divisão por 2N é realizada por quê?
 - d. O número de alelos totais é?

Frequência alélica I = p = (2n1 + n2)/2N ou ____ ou p + q/2.

Frequência alélica i = q = (2n3 + n2)/2N ou ____ ou r + q/2.

e. Colocando os valores normais tem-se então as frequências dos alelos

$$I = p = (2.$$
)/
 $I = q = (2.$)/

f. Substituindo na outra fórmula:

$$I = p =$$
_____ + _____/2 $i = q =$ _____ + _____/2

- 26. As propriedades genéticas de uma população são definidas pelas suas frequências _____ e ____.
- 27. Considerando então as seguintes frequências:

	Alelos Genótipos				
	I	I	II	Ii	ii
Frequências	P	Q	X	Y	Z

- a. Destes indivíduos são formados dois tipos de gametas contendo o alelo _____ e ____.
- b. O resultado do acasalamento irá depender da combinação aleatória de gametas e a frequência genotípica dos zigotos será (considerando os valores já calculados):

	I (p)	I (q)
I (p)		
I (q)		

 Então, após uma geração de acasalamento ao acaso, as novas frequências genotípicas da população serão:

	Genótipos					
	II Ii ii					
Frequências						

- 28. A partir dessas frequências é possível estimar as novas frequências alélicas. A frequência do alelo I = pI é obtida pela seguinte expressão:
 - a. $pI = x + \frac{1}{2}y$, onde "x" é _____. b. $qi = z + \frac{1}{2}y$, onde "z" é ____.

Sendo assim, nas sucessivas gerações de acasalamentos ao acaso (panmixia) a frequência alélica deve ser a mesma e, evidentemente a frequência genotípica não será alterada. Esse fenômeno é conhecido por equilíbrio de Hardy-Weimberg.

A lei diz: "Em uma população grande, que se reproduz ao acaso e onde não há migração, seleção ou mutação, pois todos os indivíduos são igualmente férteis e viáveis tanto as frequências alélicas como as genotípicas se mantêm constante de geração a geração".

29. Se o agricultor colheu o mesmo número de sementes de cada uma das plantas e as semeou no ano seguinte, após uma geração de cruzamento ao acaso, qual será a proporção de cada tipo de bulbo nesse novo plantio?

Genótipos	Frequências Genotípicas	Frequências Alélicas	Quantidade plantas	de	bulbos	em	2.000
II	p2 =	I = p =	Cremes =				
Ii	2pq =		Amarelos =				
Ii	q2 =	I = q =	Brancos =				

- 30. Como se dá o aumento da variedade genética em populações de Hardy-Weimberg?
- 31. O que significa ganho de seleção quando se faz uma seleção genotípica?
- 32. Porque é necessário sempre se obter a geração F₂ para se realizar a seleção genotípica?

- 33. O geneticista, para auxiliar o melhorista é capaz de determinar o tamanho certo da população de plantas onde todos os alelos poderão ser encontrados com a finalidade de seleção fenotípica posterior. Sabendo que 3 das características a serem analisadas são independentes, qual o tamanho mínimo da população para que todos os gametas possam estar, efetivamente, representados?
- 34. Considere as duas populações e suas quantidades:

```
P1 20 AA : 30 Aa : 50 aa
P2 50 BB : 40 Bb : 5 bb
```

- a. Verifique se ambas as populações estão em EHW.
 - () Não. Os valores são P1: 0,47 e P2: 1,26.
 - () Somente a P1 está em equilíbrio e a P2: 3,08.
 - () Somente a P2 está em equilíbrio e a P1: 1,8.
 - () Sim. Ambas estão em EHW = 2.
- b. Caso ambas as populações ou apenas uma delas não esteja em EHW, determine as frequências genotípicas e as quantidades dos genótipos que estarão em EHW.
 - () P1 = 23 AA : 45 Aa : 42 aa e P2 = 50 BB : 37 Bb : 7 bb.
 - () P1 = 12 AA : 45 Aa : 42 aa e P2 = 50 BB : 42 Bb : 9 bb.
 - () P1 = 12 AA : 47 Aa : 7 aa e P2 = 50 BB : 40 Bb : 5 bb.
- c. A P2 sofreu 8 ciclos de seleção contra o alelo "b". Portanto, o ganho de seleção e as novas quantidades dos genótipos são:
 - () $\Delta Q = 83\%$ e P2 = 80 AA : 14 Aa.
 - () $\Delta Q = 70\%$ e P2 = 80 AA : 19 Aa : 0 aa.
 - () $\Delta Q = 70\%$ e P2 = 80 AA : 14 Aa : 0 aa.